American Journal of Optics and Photonics

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field

Due to their physical properties and potential importance to the understanding of the electron mobility in a wide variety of materials, polarons are currently the subject of intensive research. Using one of the world most powerfull trapping entity, we investigated the influence of surrounding environment on the dynamic of Fröhlich polaron with the help of semiclassical approach under rotating wave approximation (RWA), in the consideration that we deal with a two-level-system (TLS). Both the frequency of the trap and the bandgap value between energy levels of the system particles dictate the resulting phenomenon. Trapping of Fröhlich polarons with magnetic field conducts to complete population transfer from excited state to ground state with the possibility of the formation of Bose-Einstein Condensates (BEC) at bot low bandgap energy values and important value magnetic field frequency. Fundamentally different to polaritons, nomatter the breaking down of Pauli Exclusion Principle (BDPEP), the magnetic trapping of quasiparticles Fröhlich polarons conducts to plasma formation when both the bandgap value of energy levels and the magnetic field frequency are very important. Detailed analysis of the resulted phenomenon will open a new perspctives toward understanding the dynamic of cooled and trapped Fröhlich polarons.

Polarons, Magnetic Field, Trapping, Semiclassical Approach, Bose-Einstein Condensates, Plasma Formation

Njutapmvoui Adamou, Mwebi Ekengoue Clautaire, Kenfack Jiotsa Aurelien, Kenfack Sadem Christian, Fotue Alain Jervé, et al. (2023). Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field. American Journal of Optics and Photonics, 11(1), 10-19. https://doi.org/10.11648/j.ajop.20231101.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Klein, E. La physique quantique et ses interpretations. SER, 5, Tome 394, (2001): 629-639. DOI: 10.3917/etu.945.0629.
2. Benioff, P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J Stat Phys 22, (1980): 563-591. DOI: https://doi.org/10.1007/BF01011339.
3. Feynman, R. P. Simulating Physics with computers. Int. J. Theor. Phys. 21, (1982): 467-488. DOI: https://doi.org/10.1007/BF02650179.
4. Shor, P. W. Algorithms for quantum computation: discrete logaritms and factoring. 35th Symposium on the Foundations of Computer Science, New Mexico, 20-22 November 1994, (1994): 124–134. DOI: http://dx.doi.org/10.1109/SFCS.1994.365700.
5. Strunz, W. T., Haake, F., Braun, D. Universality of decoherence for macroscopic quantum superpositions. Physical Review A, 67 (2), 022101, (2003): 1-13. DOI: 10.1103/PhysRevA.67.022101.
6. Burkard, G., Loss, D., DiVincenzo, D. P. Coupled quantum dots as quantum gates, Phys. Rev. B 59, (1999): 2070-2078. DOI: https://doi.org/10.1103/PhysRevB.59.2070.
7. Leroyer, Y., Sénizergues, G. Introduction à l’information quantique. ENSEIRB-MATMECA. Polycopié du Calcul quantique. (2016). 110 Pges.
8. Chuang, I. L., Yamamoto, Y. A Simple Quantum Computer. Phys. Rev. A, 52, (1995): 3489-3496. DOI: https://doi.org/10.1103/PhysRevA.52.3489.
9. Deutsch, D. Quantum computational networks, Proc. R. Soc. Lond. A, 425, (1989): 73-90. DOI: 10.1098/rspa.1989.0099.
10. Steane, A. Quantum computing. Rep. Prog. Phys 61, (1998): 117-173. DOI: http://dx.doi.org/10.1088/0034-4885/61/2/002.
11. Ekert, A., Jozsa, R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys 68, (1996): 733-753. DOI: https://doi.org/10.1103/RevModPhys.68.733.
12. Spiller, T. P. Quantum information processing: cryptography, computation and teleportation. Proc. IEEE, 84 (12), (1996): 1719-1746. DOI: 10.1109/5.546339.
13. Benioff, P. Models of quantum turing machines. Fortschr. Phys, 46 (4-5), (1998): 423-441. DOI: https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<423:AID-PROP423>3.0.CO;2-G.
14. Kielpinski, D., Monroe, C., Wineland, D.J. Architecture for a large-scale ion-trap quantum computer. Nature 417, (2002): 709-711. DOI: https://doi.org/10.1038/nature00784.
15. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, (1995): R2493-R2496. DOI: https://doi.org/10.1103/PhysRevA.52. R2493.
16. Roszak, K., Filip, R., Novotny, T. Decoherence control by quantum decoherence itself. Sci. Rep 5, 9796 (2015): 1-10. DOI: https://doi.org/10.1038/srep09796.
17. Ban, M. Photon-echo technique for reducing the decoherence of a quantum bit. Journal of Modern Optics, 11 (45), (1998): 2315-2325. DOI: https://doi.org/10.1080/09500349808231241.
18. Calderbank, A. R., Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54 (2), (1996). 1098-1105. DOI: 10.1103/physreva.54.1098.
19. Laflamme, R., Miquel, C., Paz, J. P., Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett, 77 (1). (1996): 198-201. DOI: 10.1103/PhysRevLett.77.198.
20. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett, 77 (5), (1996): 793-797. DOI: 10.1103/physrevlett.77.793.
21. Chuang, I. L., Yamamoto, Y. Creation of a persistent quantum bit using error correction. Phys. Rev. A, 55 (1), (1997): 114-127. DOI: 10.1103/PhysRevA.55.114.
22. Knill, E., Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A, 55 (2). (1997): 900-911. DOI: 10.1103/PhysRevA.55.900.
23. Braunstein, S. L., Smolin, J. A. Perfect quantum-error-correction coding in 24 laser pulses. Phys. Rev. A, 55 (2), (1997): 945-950. DOI: https://doi.org/10.1103/PhysRevA.55.945.
24. Fotue, A. J., Djomou, D. R.-J., Kenfack, S. C., Fobasso, M. F. C., Fai, L. C. Stability and decoherence of optical bipolaron in symmetric quantum dot. Eur. Phys. J. Plus: (2020): 1-14. DOI: 10.1140/epjp/s13360-020-00835-5.
25. Nguenang, P., Jipdi, N. M., Louodop, P., Tchoffo, M., Fai, L. C., Cerdeira, H. A. Quantum interferometry for different energy Landscape in a tunable Josephson-junction circuit. Journal of Applied Mathematics and Physics, 8, (2020): 2569-2600. DOI: 10.4236/jamp.2020.81192.
26. Kenfack, S. C., Ekengoue, C. M., Fotue, A. J., Fobasso, F. C., Bawe Jr, G. N., Fai, L. C. Laser cooling and trapping of polariton. Computational Condensed Matter 11, (2017): 47-54. DOI: http://dx.doi.org/10.1016/j.cocom.2017.05.001.
27. Ekengoue, C. M., Kenfack, S. C., Fotue, A. J., FObasso, M. F. C., Bawe Jr, G. N., Fai, L. C. Decoherence of cooled and trapped polariton under magnetic field. Computational Condensed Matter 14, (2018): 106-113. DOI: https://doi.org/10.1016/j.cocom.2018.01.012
28. Brandt, H. E. Qubit devices and the issue of quantum decoherence. Progress in Quantum Electronics, 22 (5-6), (1998): 257-370. DOI: https://doi.org/10.1016/S0079-6727(99)00003-8.
29. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M., Wineland, D. J. (1995). Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett, 75 (25), (1995): 4714-4717. DOI: 10.1103/physrevlett.75.4714.
30. Devreese, J. T. Fröhlich polarons from 3D to 0D: concepts and recent developments (Part I), 2005, P.186.
31. Fujii, K. Introduction to the Rotating Wave Approximation (RWA): Two coherent oscillations. Journal of Modern Physics, 8, (2017): 2042-2058. DOI: 10.4236/jmp.2017.812124.
32. Walls, D. F., Milburn, G. J. Quantum Optics, Springer-Verlag, Berlin, (1994). ISBN: 978-3-540-28574-8.
33. Oliver, W. D., Yu, Y., Lee, J. C., Berggren, K. K., Levitov, L. S., Orlando, T. P. Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science, 9 (310). (2005): 1653-1657. DOI: 10.1126/science.1119678.
34. Wilson, C. M., Duty, T., Persson, F., Sandberg, M., Johansson, G., Delsing, P. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003, (2007): 1-4. DOI: 10.1103/PhysRevLett.98.257003.
35. Izmalkov, A., Van der Ploeg, S. H. W., Shevchenko, S. N., Grajcar, M., Il’ichev, E., Hübner, U., Omelyanchouk, A. N., Meyer, H.-G. Consistency of ground state and spectroscopic measurements on flux qubits. Phys. Rev. Lett. 101 (1). 017003, (2008): 1-4. DOI: 10.1103/PhysRevLett.101.017003.
36. Sillanpää, M., Lehtinen, T., Paila, A., Makhlin, Y., Hakonen, P. Continuous-time monitoring of Landau Zener interference in a cooper-pair Box. Phys; Rev.lett.96, 187002, (2006): 1-4. DOI: https://doi.org/10.1103/PhysRevLett.96.187.
37. Matthews, C. F. J., Poulios, K., Meinecke, J. D. A., Politi, A., Peruzzo, A., Ismail, N., Wörhoff, K., Thompson, M. G., O’Brien, J. L. (2013). Sci. Rep. 1539 (3), 1–6.
38. Kenfack-Sadem, C., Ekengoue, C. M., Danga, J. E., Fotue, A. J., Fobasso, M. F. C., Fai, L. C. Lasser control of polariton using Landau-Zener-Stückelberg interferometry theory. The Eueopean Physical Journal Plus 135, 815, (2020): 1-24. DOI: https://doi.org/10.1140/epjp/s13360-020-00790-1.
39. Langmuir, I. Oscillations in ionized gases. Proceedings of the National Academy of Science, 14 (8), (1928): 627-637. DOI: 10.1073/pnas.14.8.627.
40. Kenmoe, M. B., Mkam Tchouobiap, S. E., Danga, J. E., Kenfack Sadem, C., Fai, L. C. Lie algrebras for some specific dissipative Landau-Zener problems. Physics Letters A, 379 (7), (2015): 635-642. DOI: https://doi.org/10.1016/j.physleta.2014.12.032.