Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model
Dmytro Vasylenko,
Petro Kravchuk,
Valerii Grygoruk
Issue:
Volume 6, Issue 2, June 2018
Pages:
20-24
Received:
4 September 2018
Accepted:
25 September 2018
Published:
26 October 2018
Abstract: In this paper, a model of a dipole with an atomic structure was considered, instead of the standard dipole model with point unlike charges and the Hertzian dipole model, which have significant drawbacks. It is shown that in the atomic dipole the Coulomb's law in the classical formulation does not work. Therefore, the Coulomb's law needs to be modified. A formula is proposed for the force of the dipole that arises between unlike charges in the process of dipole oscillations and the decompensation/compensation of their fields. The representation of the dependence of the interaction force between unlike charges on the distance between them was shown for three zones: the oscillation zone in which the proposed dipole force formula works, the ionization zone with electron shell detachment from the nucleus and coverage zone of the Coulomb's law between the divided charges formed as a result of ionization of the atom. The dynamics of the process of oscillation of the atomic dipole in four phases (quarters of the period) is investigated. It is shown that the reactive energy flows first emerge from the dipole, and then return to it, while the active energy flows always propagate from the dipole to the far zone. The mechanism of wave propagation of the radiation field is shown.
Abstract: In this paper, a model of a dipole with an atomic structure was considered, instead of the standard dipole model with point unlike charges and the Hertzian dipole model, which have significant drawbacks. It is shown that in the atomic dipole the Coulomb's law in the classical formulation does not work. Therefore, the Coulomb's law needs to be modif...
Show More