Optically-Pumped Edge-Emitting Semiconductor Laser Using Coupled Ridge-Waveguide Structure
Nithin Vogirala,
Mangalpady Rajaram Shenoy
Issue:
Volume 10, Issue 2, June 2022
Pages:
10-15
Received:
10 October 2022
Accepted:
28 October 2022
Published:
4 November 2022
DOI:
10.11648/j.ajop.20221002.11
Downloads:
Views:
Abstract: In this paper, the authors propose an integrated design of an in-plane optically-pumped edge-emitting ridge-waveguide semiconductor laser, without any bulk components. The optical pump radiation is transferred to the active region of the laser through coupling from the adjacent transparent waveguide. The laser device is based on In1-xGaxAsyP1-y/InP heterojunction, with a pump at 1310 nm wavelength and lasing around 1550 nm. The proposed scheme enables optical-to-optical signal control, in place of the current controlled signal in an electrically-biased semiconductor laser. Since the structure doesn’t require any p-n junctions, a high-quality active material with minimum doping can be employed. In order to simulate the steady-state characteristics of an optically-pumped semiconductor laser, the well-established Connelly’s model for semiconductor optical amplifiers (SOAs) is suitably modified. The validity of the model for semiconductor lasers is established by showing that the evolution of simulated longitudinal modes conforms with the prediction of laser theory. For the chosen device parameters, under optimum operating conditions, the threshold pump power is found to be ≈ 70 mW along with a high pump power conversion efficiency (i.e output laser power/input pump power) of 61%. The proposed all-optically pumped semiconductor laser could be in the form of a 2-port fiber pig-tailed integrated optical device, without the need for any bias current.
Abstract: In this paper, the authors propose an integrated design of an in-plane optically-pumped edge-emitting ridge-waveguide semiconductor laser, without any bulk components. The optical pump radiation is transferred to the active region of the laser through coupling from the adjacent transparent waveguide. The laser device is based on In1-xGaxAsyP1-y/InP...
Show More