-
Optoelectronic Module with Integrated Transceiver and Mux-Demux for Optical Interconnect Applications
Nga Thi Hang Nguyen,
Ikechi Augustine Ukaegbu,
Jamshid Sangirov,
Hyo-Hoon Park
Issue:
Volume 7, Issue 2, June 2019
Pages:
28-32
Received:
21 June 2019
Accepted:
12 July 2019
Published:
24 July 2019
Abstract: The design, development and improvtableement in electronic devices and components have led to the further miniaturization of the system devices and their interconnecting interfaces. Hence, reducing the size of the transmitter (Tx) chips, receiver (Rx) chips and associated components play an important role in designing a reduced/small sized optoelectronic modules for optical interconnect applications. Some of the associated components include multiplexer, demultiplexer, clock and data recovery circuits (CDR), etc. Therefore, in this paper we present an optoelectronic module with integrated transceiver (Tx-Rx) and multiplexer-demultiplexer (mux-demux) with the aim of reducing the total area occupied by the chips. The topology is based on sharing common blocks between Tx and Rx as well as Mux and Demux for saving chip area, power consumption and board area. Based on this topology, a design of 2-channel Tx/Mux and Rx/Demux is realized in a 0.18 μm CMOS technology. The measurement results show clear output eye diagrams at 2.5 Gbps with the voltage swing of 375 mVpp from the Rx/Demux. The combined solution would save the chip area and power consumption of 10% and 23%, respectively, compared to discrete circuits implementations. Using this topology, a high efficient bidirectional optical link could be implemented in modern computer and other green IT applications.
Abstract: The design, development and improvtableement in electronic devices and components have led to the further miniaturization of the system devices and their interconnecting interfaces. Hence, reducing the size of the transmitter (Tx) chips, receiver (Rx) chips and associated components play an important role in designing a reduced/small sized optoelec...
Show More
-
Simulation and Analysis of Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator
Ali Husainat,
Warsame Ali,
Penrose Cofie,
John Attia,
John Fuller
Issue:
Volume 7, Issue 2, June 2019
Pages:
33-40
Received:
17 July 2019
Accepted:
10 August 2019
Published:
20 August 2019
Abstract: Hybrid organic-inorganic perovskite solar cells have attracted the attention of researchers and scientists throughout the world. From 2009, when actual research work began on photovoltaic perovskite applications, a lab power conversion efficiency above 23.3% have been achieved. Whereas, silicon solar cells have only achieved power conversion efficiencies around 17.5% in both residential and commercial applications. A typical perovskite solar cell consists of 6 main layers of different materials: a glass layer, a thin layer of fluorine-doped tin oxide substrate (FTO), an electron transport layer of TiO2, a perovskite active layer known as methylammonium lead iodide (CH3NH3PbI3), a hole transport layer of Spiro-Ometad, and a gold (Au) electrode. This paper summarizes the research that focused on the selective use of the perovskite solar cell’s composite materials, specifically, the Spiro-Ometad layer, the methylammonium lead iodide layer (CH3NH3PbI3), and the TiO2 layer with a variation of the thickness of the perovskite layer. Initial simulation results show a power conversion efficiency of 20.34% when using a gold (Au) electrode. Further research is needed, in which new technology for device fabrication will create homogeneous thin-film layers that will be tested for increased efficiency.
Abstract: Hybrid organic-inorganic perovskite solar cells have attracted the attention of researchers and scientists throughout the world. From 2009, when actual research work began on photovoltaic perovskite applications, a lab power conversion efficiency above 23.3% have been achieved. Whereas, silicon solar cells have only achieved power conversion effici...
Show More
-
20 G bps Pulse Amplitude Modulation (PAM) Format for Capacity Upgrade in Optical Communications
Yegon Geoffrey Kipkoech,
Waswa David Wafula,
Isoe George Mosoti,
Arusei Geoffrey Kipkorir,
Rtich Kipkoske Samwel,
Tim Gibbon Braidwood,
Leitch Andrew
Issue:
Volume 7, Issue 2, June 2019
Pages:
41-45
Received:
6 August 2019
Accepted:
23 August 2019
Published:
10 September 2019
Abstract: In the fast growing society, communication is broadening so rapidly such that internet users need to access information rapidly and amount of data flowing through internet is very huge. Various techniques for increasing capacity in data centers have drawn lots of attention in recent years. One way of addressing this demand is introduction of advanced optical modulation formats which has been motivated by the demand for high transmission capacity and better system reliability. In this work, two electrical data streams at bit rate of 10 G bps each were combined to produce 20 G bps multilevel system 4-PAM with four levels. One of the four amplitudes represents a combination of two bits (00, 01, 10, 11) per symbol. This therefore transmits two bits in parallel and therefore the data rate is doubled. The generated data was transmitted over 3.21km G.652 fiber at standard BER of 10-9. This format can be used to simultaneously transmit two bits per symbol per wavelength thereby increasing the overall link transmission speed while maintaining the channel bandwidth. We further demonstrated a digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware. The ability to use a single photodiode to demodulate the multilevel signal, brings a further reduction in cost on implementing the scheme. This spectral efficient modulation format will achieve even higher data rate per channel when coupled in a Dense Wavelength Division Multiplexing (DWDM) system. This will therefore lead to significant cost saving of capital investment and easing the system management and hence an efficient utilization of bandwidth.
Abstract: In the fast growing society, communication is broadening so rapidly such that internet users need to access information rapidly and amount of data flowing through internet is very huge. Various techniques for increasing capacity in data centers have drawn lots of attention in recent years. One way of addressing this demand is introduction of advanc...
Show More